Quantitative Systems Pharmacology (QSP) tools to aid in model development and communication: Vantage QSP Modelling Tools (VQMTools)

Madhav Channavazzala¹, Dinesh Bedathuru, Priyamvada Modak, *Rukmini Kumar(rukmini@vantage-research.net) Vantage Research, http://www.vantage-research.net (1. Presenter, * Corresponding author)

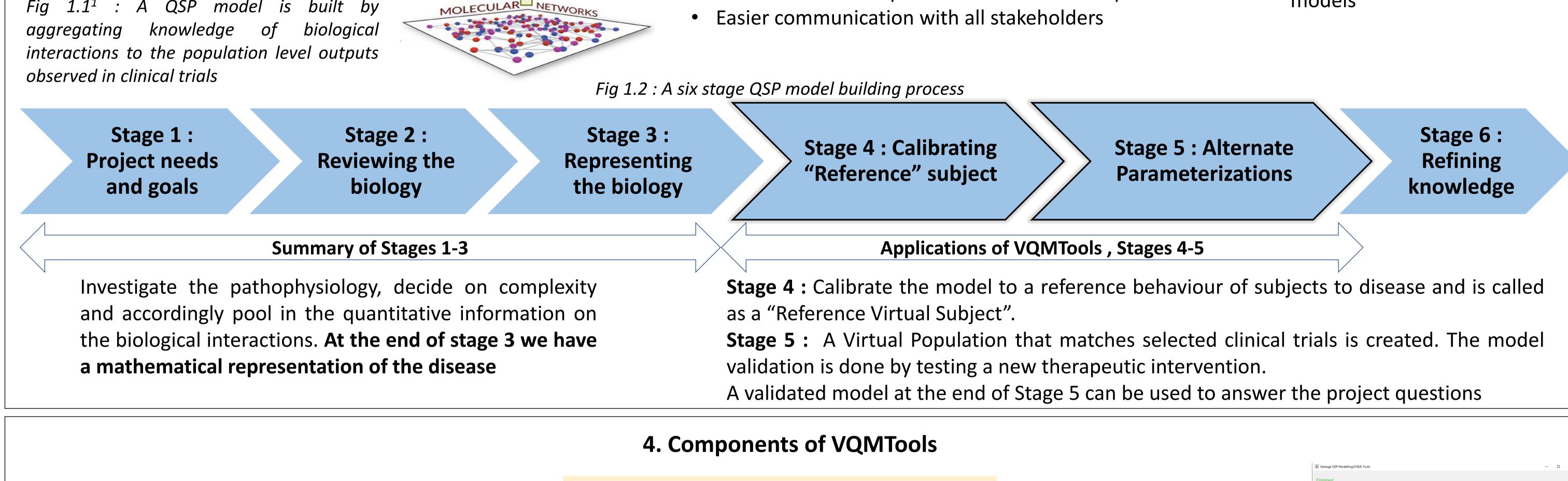
VQMTools is a QSP Model development toolset, providing the QSP modeler a set of tools, that automate essential and recurrent tasks. The toolset accelerates model development, while providing a set of standardized outputs.

1. Introduction to QSP modelling

QSP models integrate data and knowledge of physiology from multiple scales, Fig 1.1¹. The 6 stages of QSP model development is described in Gadkar et al², (Fig 1.2). Although building models of complex physiology can a challenging endeavour, software tools to help automate frequently accelerate repeated tasks can development. VQMTools aims to provide such a toolset.

Fig 1.1¹ : A QSP model is built by

2. Need for automated tools in QSP modelling

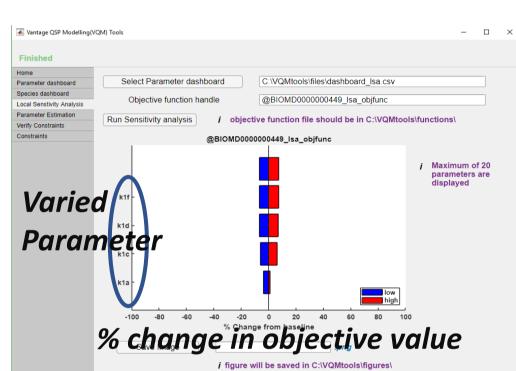

Calibrating a Reference Virtual Subject (see Stage 4) requires exploring model dynamics, Sensitivity analysis, **Parameter estimation** and finally **verifying Reference** Virtual Subject (Ref VS) for physiological feasibility. Similarly, Stage 5 requires creating a virtual population and then running **diagnostics on Virtual Population (Vpop)**

Objectives for developing VQMTools

- Improve efficiency by automating recurrent QSP model development tasks. This allows the modeler to focus on model features and addressing research questions.
- Make model assumptions and constraints explicit

3. About VQMTools Software

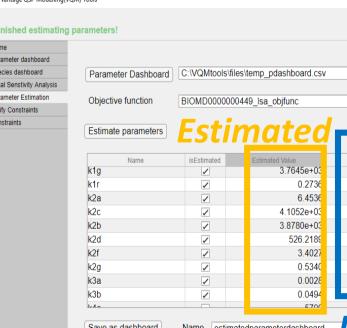
- Command line interface and GUI
- Open source, free to use tools
- Currently models in SBML and Simbiology formats can be imported
- Requires MATLAB 2018, Simbiology application, Optimization toolbox
- Suitable for ODE based models



1. Sensitivity analysis

QSP models by design typically consist of 10-100s of parameters. While some of these are constrained by the "bottom-up" data curated from literature, there are often several parameters which need to be estimated. A sensitivity analysis increases understanding of uncertainties in the model.

CELLULAR

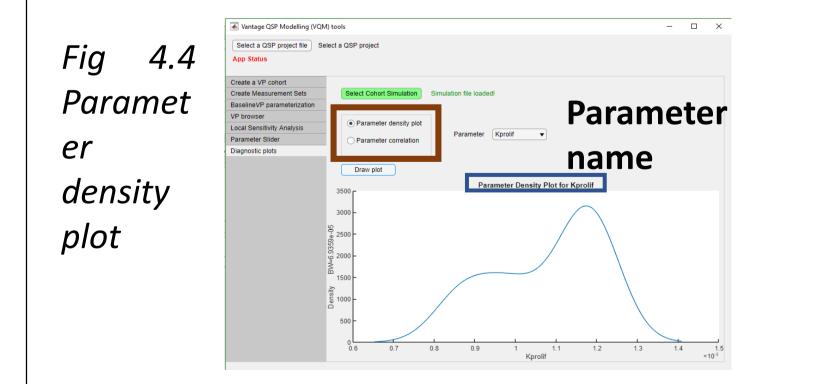

VQMTools is useful to run **sensitivity analysis** of parameters for a specified objective function. The tool generates a tornado plot as shown (Fig 4.1)

4.1 Tornado plot for Fiq parameter sensitivities

2. Parameter estimation

VQMTools uses methods from MATLAB optimization toolbox to estimate the set of parameters that minimizes the specified

Fig 4.2 sl	hows the
interface	for
parameter	r
estimatior	n for a
chosen	objective
function	using
VQMTools	


After identifying under-constrained parameters from model development and sensitivity analysis, the modeller needs to estimate them by calibrating the model to a "Reference VS" behaviour".

objective function – 🗆 🗙

ameters!				Fig
Parameter Dashboard	C:\VQMtools\file	es\temp_pdashboard.csv		Fig int
Objective function)449_lsa_objfunc		na
Estimate parameters	Esti	<u>mated</u>		pu
Name k1g	isEstimated	Estimated Value 3.7645e+03	Original Value	pa est
k1r	✓ ✓	0.2736	0.5471	
k2a		6.4536	3.2270	cho fur VC
k2c	✓	4.1052e+03	5759	
k2b	\checkmark	3.8780e+03	3424	
k2d	✓	526.2189	280.8000	fur
k2f		3.4027	2.9130	jur
k2g		0.5340	0.2671	5
k3a k3b		0.0028	0.0014	
KOD kao		570C	E700 *	VQ
Save as dashboard	Name estima	tedparameterdashboard	Initial	.csv

VQMTools allows for user to easily visualize parameter distributions across Vpop and parameter correlations.

parameter

5. Population diagnostics

Understanding parameter distributions

and correlations in a Vpop is an

important step to evaluate the model

identify spurious

and

relations.

4. Virtual population

3. Constraint verification

Creating Virtual Population is the hallmark of model. The ability to replicate QSP response/non-response to therapies, at a biological level, from the population knowledge, gives the model predictive power.

VQMTools takes a monte-carlo approach to create a cohort. User can filter this using 'measurements' to get to Virtual Population

cohort					
surement Sets	:\Users\admin\Documents\Madv	work\VQM\vqmtool	s\files\VP_Cohort_ReponseTy	pes2.mat	
	Onlast Deserves File				
parameterization	Select Responses File				
•	MS1		Time at Minimum	0,365	
ivity Analysis	MS2		Time at Minimum d/dt	5.6802,256.697	
lider	MS3		Value at Minimum	2.3342,4.2	
	Filter cohort j Spe	ecify filtering rang	e as a,b;c,d for the accepted	d range [a,b] [c,d]	
	Filter cohort j Spo /Ps with the selected Measurer		e as a,b;c,d for the accepter	d range [a,b] [c,d]	
				d range [a,b] [c,d] 0.3280	0.0066
	/Ps with the selected Measurer	0.0082 0.0084	8.2000e-04 0 8.4000e-04 0).3280).3360	0.0067
tered	/Ps with the selected Measurer	0.0082 0.0084 0.0086	8.2000e-04 0 8.4000e-04 0 8.6000e-04 0	0.3280 0.3360 0.3440	0.0067 0.0069
tered	/Ps with the selected Measurer	0.0082 0.0084 0.0086 0.0088	8.2000e-04 0 8.4000e-04 0 8.6000e-04 0 8.8000e-04 0	0.3280 0.3360 0.3440 0.3520	0.0067 0.0069 0.0070
tered	/Ps with the selected Measurer	0.0082 0.0084 0.0086 0.0088 0.0090	8.2000e-04 0 8.4000e-04 0 8.6000e-04 0 9.0000e-04 0 9.0000e-04 0).3280).3360).3440).3520).3600	0.0067 0.0069 0.0070 0.0072
tered	/Ps with the selected Measurer	0.0082 0.0084 0.0086 0.0088 0.0090 0.0092	8.2000e-04 0 8.4000e-04 0 8.6000e-04 0 9.0000e-04 0 9.0000e-04 0 9.2000e-04 0).3280).3360).3440).3520).3600).3680	0.0067 0.0069 0.0070 0.0072 0.0074
	/Ps with the selected Measurer	0.0082 0.0084 0.0086 0.0088 0.0090	8.2000e-04 0 8.4000e-04 0 8.6000e-04 0 9.0000e-04 0 9.2000e-04 0 9.2000e-04 0 9.4000e-04 0).3280).3360).3440).3520).3600	0.0067 0.0069 0.0070 0.0072

Fig 4.3 Selecting Virtual Population from a large Cohort

Model constraints Parameter dashboa Species dashboard Local Senstivity Anal Parameter Estimation .0011815 < IRip < 0.11815 IRS1 range 8.6242 < IRS1 < 862.42 S6Kp range 0.017031 < S6Kp < 1.703 9.3122e-05 < IRp < 0.0093122 IRp range 0.0052789 < IRi < 0.52789 PKB range 7.8022 < PKB < 780.22 S6K range 9.983 < S6K < 998.3 Pass or fail IRS1 range S6Kp range IRp range IRi range PKB range S6K range S6p range IRip+IRS1)> 2*PKE

Fig 4.2 VQMTools interface for model verification

QSP models have physiological constraints (e.g., in Rheumatoid Arthritis, CD4/CD8 cell ratio is expected to be between 7 and 15) and constraints imposed by the modeller to match desired physiological mechanisms.

VQMTools allows the modeller to maintain a collection of all the constraints and verify them quickly and easily at each stage of model development

Current Applications

VQMTools are being used in development of a Vantage • Rheumatoid Arthritis QSP model. Feedback from the modelling team is informing continued development of VQMTools software

Next steps

Add features that facilitate communication of models with non-modelling stakeholders (e.g., ability to "play" with model and visualize predictions

Testing in multiple QSP models

References

1. Goldman et al. Bioregulatory systems medicine: an innovative approach to integrating the science of molecular networks, inflammation, and systems biology with the patient's autoregulatory capacity?. Frontiers in Physiology, 225(2015) 2.Gadkar K et al . A six-stage workflow for robust application of systems pharmacology. CPT Pharmacometrics Syst. Pharmacol. 5, 235–249 (2016)